Software Architecture for Automated Fault Analysis:
Scalable Deployment and Use of Open Source

T. Popovic#', IEEE Senior Member, M. Kezunovic*z, IEEE Fellow, B. Krstajic**3, IEEE Member

”XpertPower Associates, College Station, Texas, USA

"Dept. Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA
Dept. Electrical Engineering, University of Montenegro, Podgorica, Montenegro

'tomo@xpertpower.com, 2kezunov@ece.tamu.edu, 3bozok@ac.me

Abstract-- This paper discusses architecture-significant
requirements for an automated fault analysis system. The
analysis utilizes substation data collected from event-
triggered intelligent electronic devices (IEDs). The
proposed architecture assumes generic, transparent, and
robust computations that can be applied to variety of IED
types and models. When defining a universal solution, the
use of standards is critical to facilitating the transparency,
scalability, and interoperability. The solution is typically
configured to fit the end user needs, which requires
configuration traceability, acceptance testing, and change
management after the deployment.

Another aspect of the transparency and scalability of
the proposed solution is the use of open source software
(OSS), both for the development and deployment of the
system. The discussion includes the deployment tools
selection and setup. Particularly, the experiences and
benefits of using OSS when deploying a system for
automated fault analysis are shared.

Index terms — substation automation, intelligent electronic
device, fault analysis, substation data analytics, open
source software

I. INTRODUCTION

The data gathered from various intelligent electronic
devices (IEDs) installed throughout the power system
needs to be utilized in a smart and efficient way. In
recent years, the large-scale deployment of IEDs
resulted in a massive amount of substation event data
that needs be collected, communicated, and processed in
a timely fashion [1]. In addition, several new challenges
such as cyber-physical security, time-synchronized data
storage, configuration management, and efficient
visualization need to be addressed as well. The key to
efficient use of IED data is to implement fully
automated and scalable data analytics solutions.
Traditionally, such solutions would be limited to a
certain IED type, usually digital fault recorders (DFRs)
or digital protective relays (DPRs), which are also
vendor and vintage specific. The IED event data was
considered non-operational and used in after-the-fact
analysis in the past but it is being considered for on-line
use Now.

This paper discusses the architecture-significant
requirements for substation IED data integration and
automated analysis solutions. The idea for these
solutions is not new and started with first DFRs being
installed [2-4]. The requirements are evolving from the
experience with previous implementations [5,6]. The
presented architecture addresses a broader variety of
substation IEDs capable of event-triggered data
recording (DFRs and DPRs). The paper illustrates an
open architecture that allows transparent approach to the
uses of IED data, analytics modules, as well as
visualization of the data and results. The proposed
architecture is scalable and enables further expansions
and interfacing to third-party solutions such as SCADA
and satellite maps. A path to achieving transparency of
the IED data, analytic functions, and user interface is
proper utilization of available standards and non-
proprietary formats. Another aspect of the transparency
and scalability of the proposed architecture is the use of
OSS for the deployment of the solution. The paper
addresses experiences and benefits of using open source
software both in the development and deployment stages.
Approaches for making the future solution scalable,
upgradeable, stable and flexible, yet commercially
attractive, are discussed with a focus on differentiation
of open source benefits and pitfalls. The focus is on the
need to understand required guarantees of the code
supplier to meet the criteria for standards compliance,
testing, and commissioning.

II. BACKGROUND

The awareness about OSS has been around for some
time and its popularity rapidly has risen over the last 10
years [7,8]. This is due to various reasons, but mainly
because of the wide availability of the Internet,
increased quality of the software offered by the OSS
communities, and support from some of the major IT
players such as Novell, IBM, Google, and others. OSS
offering includes operating systems, databases,
networking, virtualization, development tools, and other
software that has been widely used throughout industry.

The OSS development promotes evolutionary thinking,
and iterative and incremental processes. This is very
much in line with modern concepts of software
development and agile methods [9]. The traditional
sequential development methods processes such as
“waterfall” are driven by costs, estimates, requirements
defined in advance, and traceability. They are typically
not flexible and very vulnerable when a need for a
change arises. It is very hard to generalize OSS projects,
but they are usually driven by some common interests
and communities that form around these interests. The
processes are iterative, welcome change, exploration,
and there are typically no firm deadlines and detailed
requirements specifications set in advance.

The process data diagram of an OSS development is
given in Fig. 1. It is a slight update of the diagram
originally created by M. Abbing [10]. Typically, the
development team is initially created by a group of
people that defined the problem. They then form a
development team and define initial work plan. It can be
defined loosely and refined later as the project grows.
The initiation of the project can be initiated by an
interest group, various non-profit organizations,
governments, and even commercial enterprises. Once
the project exists, the process goes through continuous
iterations, which include development execution and
software release. It is important to understand the roles
in the OSS project life cycle. Typical commercial
projects include roles such as developers, users, and
customers. The customer is a stakeholder financing the
project, while the users have to work with the product.
The developer is the third role providing the service of
the product development. It is not unusual that clashing
interests exists between each of these groups [11]. In
open source projects there are still roles of users and
developers, but the role of customer is distributed
between the two. The two groups share interests and
users are treated as co-developers [12]. The OSS
software is widely used in power industry as well.
Examples are operating systems in embedded devices,
communication and networking equipment, operating
systems for data and application servers, document
management systems, virtualization, databases, etc.
Even some of the applications come in the form of OSS
[13,14].

Fault and disturbance analysis entails taking
measurements from [EDs triggered by the fault events
and converting them to data, processing data into
information, and then using this information to extract
knowledge about the fault event [15]. The fault analysis
can automatically provide various details, including
identification of the affected circuit, whether the
disturbance was a fault, fault type, fault location,
duration, and evaluation of protection performance. All
of this knowledge can be presented to the users and will

help them take actions and make decisions more
efficiently. This is especially important when there is a
need for quick restoration of the system.

Universal and scalable solutions should utilize the
available standards to address the data file format,
naming, time synchronization, configuration settings,
and interoperability. Recordings coming from the IEDs
need to be matched with the corresponding IED settings
as well as with the correct current power system
component parameters. IED-specific settings sometimes
come with the IED recordings, but it is not unusual to
see those placed in a separate file or even kept on a
remote computer. Easy access to the IED settings is
critical in order to enable the fault analysis. Some of
these issues are being addressed in current IEEE
standards development work, including Common
Format for Transient Data Exchange (COMTRADE)
and Common Format for Event Data Exchange
COMFEDE) [16,17]. Another useful standard for
handling event-triggered IED data is IEEE file naming
convention (COMNAME) [18]. Event-triggered data
should be time-stamped and the assumption is those
substations IEDs are using time reference from the
global positioning system (GPS) of satellites [19].
Handling of the configuration settings can be
implemented by interfacing to other systems such as
short-circuit program database, relay-setting
coordination database, SCADA PI historian, or the
International Electrotechnical Commission (IEC) 61850
Substation Configuration Language (SCL) files [20].

Start
[existing project]

[else]

Initiation

prablem Discovery

_____ PROBLEM DESCRIPTION
TTT
———— > WORK PLAN

Finding Developers

Solution Identification

| U R

Execution

Code Development
and Testing

Code Change Review

_____ CODE DOCUMENTATION

Code Commit and

~ +r

Releasing

Release Management ’— ------ RELEASE

[continue development]

[else]

@

Fig. 1 Open Source Software Development Process

The data analytics solutions can also have their own
management and version control for the configuration
settings. Exporting results to other solutions may
drastically improve the work flow of the engineers who
use the solution. Common Interface Model (CIM) and
other relevant standards need to be considered [21].
Being open to utilization of the available and future
standards is the key to interoperability and scalability of
the solution.

III. IMPLEMENTATION ARCHITECTURE

The implementation architecture for event-triggered
data analytics is depicted in Fig. 2. There are two main
parts in the framework: a) the data warehouse, and b)
interface specifications. The data warehouse contains
substation event data, configuration settings, and
analytics results (output). Interface specifications define
implementation rules for file format conversion
(unification), access to the configuration settings,
running of data analytics functions, and finally, access to
the converted data and analytics reports.

Data Integration
Framework

<<database>>

<<interface>> Data Warehouse

File Format Conversion
(IED Data)

| Me—"

()

Event Data
— ..-’—'—_-——'/
—
‘-"-‘-——._.———/
1 “"-'—_'———J
Configuration
Settings

<<interface>>
Configuration Settings
(Meta data)

A

<<interface>>
Data Analytics

()
I

’——'__—‘—.-"h

‘.’-'—n_,_,__o/

v “.'-‘—_-——'/

* Data Analytics
Results

<<interface>>
Data and Reports —
Access

()

Fig. 2 Architecture framework for event-triggered data analytics

A. Data Warehouse

The data warehouse is the “glue” for the proposed
architecture. It is the foundation for the event analysis
solution since all of the communication to and from the
solution goes through the data warehouse using the rules
defined in the implementation interfaces. The data
warehouse contains the following types of data:

1) Event Data: all IED-recorded data needs to be
converted to selected standard data format such as
COMTRADE and COMFEDE. The file repository in the
database should utilize a standardized COMNAME file
naming convention. It is most likely that the actual file
repository integration will require combination of
vendor-based and custom developed software modules
in order to make sure that the records comply with the
selected data format and naming standards.

2) Configuration Settings Data: Besides the IED data,
the database has to contain system configuration data
that describes: system components and their relationship
(i.e. lines, buses, circuit breakers, switches, relays, CTs,
VTs, etc.); IED configuration with IED channel
assignments and calibration to specific system
components (line/bus voltages, line currents, status
signals). The system configuration data enables
automated IED data conversion into standard formats
and integration into the database thus making the data
available for new data analytics (software modules).
Configuration settings, sometimes called the meta-data,
are kept in a readable, non-proprietary formats such as
ASCII text and XML [22,23] and, if possible, following
the SCL from IEC 61850 [20].

3) Data Analytics Results: The data analytics results
should also be kept in non-proprietary and readable
formats (ASCII, XML, and even PDF). It is critical to
always consider re-usability of the information that is
kept in the data warehouse. For the database, it is
recommended to use standard SQL command subset
supported by various database engines [24].

B. Implementation Interfaces

Four implementation interfaces proposed in Fig. 2
define how each of these functionalities needs to behave,
what main functions are required to implement, and
what formats to use for the results. Interface concept can
be seen as a “contract”, which each implementation
needs to satisfy. In this framework, the main goal
associated with use of these interfaces, is to achieve a
universal approach and transparency in data integration,
configuration handling, use of data analytics, and
presentation of the results. The following sections
illustrate the concept using the implementation examples.

1) File Format Conversion: the target is that all of the
I[ED data gets automatically converted into non-
proprietary file formats such as COMTRADE and be
readily available for further use. Some IEDs do provide
tools for exporting data into COMTRADE, or even
natively store their records into COMTRADE. However,
even then we may need to convert the data since
COMTRADE standard has various revisions and allows
for lots of freedom with respect to which configuration
data is provided or omitted. This can result in files that
do provide correct syntax, but are not semantically
correct or complete. Real-life examples include
situations where the channel units were not correctly
assigned (V or A), channel numbers, phase or circuit
designations are missing, etc.

2) Configuration Settings Interface: As mentioned
before, the configuration settings are needed for the
proper file format conversion. The settings are even
more critical to proper operation of the data analytics as
they provide additional information needed to add the
semantics to the measurements stored in IED files. The

configuration tool that provides for entering and editing
of the settings related to the file conversion (channel
assignments, scaling, and mapping) is needed. Such a
tool also provides functions for entering system
component descriptions needed for the analysis. For a
transmission line, it is used to enter line length,
impedance, associated buses, transformers, breakers, and
protective relays. All this information is used later by
the data analytics or its users. One of the biggest
challenges is proper configuration change management.
All of the configuration settings can and do change over
time. Sometimes, the changes are induced by various
upgrades in the system and equipment, but also there are
changes of the standards and recommendations that are
constantly evolving. Systems for automated substation
data integration and analytics are heavily dependent on
the settings being correct. All the changes in the settings
need to be correctly handled using version control [25].
3) Data Analysis: multiple data analytics functions
can be built upon the data integration database and by
following the definition of implementation interfaces
(Fig. 3). Firstly, the data and report access allows
transparency in accessing converted IED data. The data
analytics functions do not need to know the details about
the IED data source. The same interface is used to feed
the analytics reports back to the database. Secondly, the
data analytics implement elements of the configuration
access in order to retrieve the meta-data needed to
interpret the semantics of the IED records. Finally, the
data analytics interface provides for a transparency from
the system's point of view. Invoking and controlling the
data analytics functions by the system or users should be
transparent regardless of their inner differences and
functionalities.
Transparent

IED data and
Reports

<<interface>>
Data and Report
Access

—<CO

Transparent
Configuration
(Metadata)

Q10

- |ED Data Analytics

= (Comtrade) Report
D

<<interface>>
Configuration Settings
(Meta data)

Config

Seftings
<<interface>>
Data Analytics

|ED Data Analytics
(OFR, DPR, CER, elc.)
Transparent F° .
Analytics P ——
Functions et

various PP ——
Data I
Analytics |
1
'

N /
Manual _——
Interaction

User

Fig. 3 Implementing the fault data analysis

4) Data and Report Access: the same transparent
approach is applied to the implementation of universal

graphical user interface (GUI) and dissemination of the
analytics reports. The data and report access interface
can be implemented in a web-based and desktop-based
GUI. Same GUI options for viewing substation IED
waveforms and analytics reports can be used regardless
of the data source.

IV.DEPLOYMENT USING OPEN SOURCE SOFTWARE

This section describes the OSS tools selection and
provides a deployment example.

A. Selection of OSS Deployment Tools

The following OSS tools are used to implement and
deploy the proposed architecture:

1) Core technology (Java): the platform selected for
developing software is Java [26]. There are several Java
development kit (JDK) implementations and Sun
(acquired by Oracle) has made JDK available as OSS
under the name OpenJDK. Important thing about Java is
that it is widely accepted by universities and industry
around the globe. Java is platform-independent and it is
supported by variety of operating systems. There is a
variety of OSS libraries that make life of Java
developers easier. Finally, there is a great selection of
software development tools for Java coming from OSS
world [27].

2) Operating system: Linux operating system can be
very effectively used for deploying the solutions
implemented in Java technology. In this example we
used Ubuntu Linux distribution [28]. Ubuntu is easy to
obtain and install both in a form of server or workstation.
Besides Linux, other operating systems such as BSD
(also OSS) and Windows that is coming from closed
source commercial world.

3) Application Server: Apache Tomcat is used as an
application server: the server side of the solution [29]. It
is an open source servlet container and implements the
Java Servlet and JavaServerPages (JSP) specifications
from Oracle (formerly Sun Microsystems). It also
provides a “pure Java” HTTP web server for Java code
to run.

4) HTTP Server: Apache2 is used to host web pages
relevant to the solution as well as to control the remote
file access to the substation data and analysis results [30].
It provides connection to the web application
implemented in Java technology using the Apache
Tomcat connector.

5) Database: there are several OSS database engines
that can be used for the solution. We opted here for
PosgreSQL database engine that is available on different
operating systems, easy to install and maintain [31]. The
solution’s data warehouse is implemented combining the
database and file repository. The database provides easy
access to the meta-data and descriptions of the events
and analysis results. It also provides the references to the
files in the file repository.

6) User workstation: the workstations only need a
standard web browser and Java run-time engine (JRE).
A good example of OSS web browser is widely used
Mozilla Firefox [32], but others can be used as well.
JRE is needed only in case that particular user wants to
run Java Web Start programs, which are the desktop
applications that load from the web [26].

B. Deployment Example

The solution for substation data integration and
automated analysis can be very successfully deployed
using open source software. Fig. 4 is illustrating the
deployment of the latest generation of the solution using
Linux operating system. The components can be
deployed to fit the needs of an actual utility and users:
substation only installation, centralized, distributed, or
regional. The solution is platform-independent and was
successfully deployed on MS Windows as well. The
solution utilizes Apache HTTP and Tomcat servers,
which are secure, scalable, and easy to maintain. The
selected open source deployment tools are widely used
and supported by virtualization software [33,35], as well
as in the cloud computing environment [35]. Key
benefits of the use of open source tools are improved
portability, interoperability, scalability, security, and
maintainability.

<<web8erver>>

Linux
&) Browser

Java
Plug-in

< HITP(S) —>|

User

qugb

<<databaseSener>>
Linux Server

<<aplicationServer>>
Linux Server

PostgreSQL
gresa Tomcaté

Web
Application

OpenJRE

Data
Manager

File Repository

i

==substationPC>>
Linux Workstation

OpenJRE N

Processing
Client

Fig. 4 Automated fault analysis deployment using OSS

The processing client, data manager and database
servers are running 24/7 as a service in the background.
They are fed the IED event-triggered data through an
automated data collection, which provides the incoming
folder of the solution with newly recorded event files.
The users can access the event data and analysis results
using their web browser and the solution’s web

application. In addition, the users can use a desktop-
based report viewer (Fig. 5), which runs on Java Web
Start and does not need installation.

The email-based notifications can efficiently be used
with desktop, as well as with smartphones and tablets.
The analysis results are stored back in the data
warehouse and can easily be ported to third-party
systems. Examples of such integration with other
systems include satellite maps and GIS [36], and
SCADA using CIM [15,21]. There is even an OSS
Java/CIM library that can be explored and used for such
integration [37].

Substation Assistant” Report Viewer v3.0

3

& Select Line From INL
Busl - us2

mear | =
Line Channels

P WAIAN W [non -

i [AzFE -

i© [A3rmc ~

W [vone =

vA [IA5IF5-VA =

B] F6-v8

ve [Fr-ve -

s QAR Invert

R A S N
- :
siF-ic 1R

uuuuu

Fig. 5 Desktop-based GUI using Java Web Start

V. EXPERIENCE AND CONSIDERATIONS REGARDING OSS

The solution was successfully implemented and
deployed using OSS tools, which enabled -easier
maintenance and interoperability, better scalability,
configuration traceability and verification. There are
several aspects of OSS adoption and use that include
technical, social, legal, and other questions that are
beyond the scope of this paper. It is, however, important
to acknowledge the quality of OSS offerings such as
software development tools, operating systems,
databases, and web and application servers. The quality
of these packages can be related to the strengths of the
corresponding OSS development and management
communities and even commercial entities that support
these projects.

It remains an interesting topic how to create reliable
and sustainable solutions using OSS for automated fault
analysis. What would it take to initiate such a project as
an OSS and form a community that is capable of
successfully growing and maintaining its development
remains unanswered. Forming the team could be a
challenge as the combination of skills needed is not as
commonly available as when dealing with more general
type of IT applications. Breaking down the solution into
specific algorithms and subsystems before making it an

integrated OSS solution would be desirable. The nature
of the application and variations in needs of different
users, such as transmission owners/operators or
independent system operators, would most likely result
in a situation that each user may need a solution
configured to fit their specific needs [38]. These specific
requirements include the availability of IEDs,
communication options, protection schemes, or needs to
utilize different fault location calculations [39,40]. In
addition, the end users proprietary information and
security concerns have to be carefully considered and
protected. On the other end, the developers and solution
provider’s responsibilities, guarantees, and liabilities
need to be precisely defined and understood. Risks and
benefits associated with open-sourcing the final
application product need to be driven by the end user.

V1. CONCLUSIONS

The following is the list of key contributions in this

paper:

e The paper discusses architecture-significant
requirements for automated analysis of event-
triggered fault data collected in transmission
substations.

e The proposed architecture aims at universal
solution that provides transparent access to
substation data and analysis results, which
requires proper understanding and utilization of
the relevant standards.

e Experience with the use of OSS for development
and deployment of the solution is discussed using
description of selected OSS tools and the
deployment example.

e The paper raises the awareness about the
availability and quality of OSS deployment tools
and their application in substation data
integration and fault analysis.

e The issues and concerns related to opening the
source code of the solution itself are addressed.
The importance of understanding the impacts of
such action is stressed.

ACKNOWLEDGMENT

Authors would like to thank individuals involved in
the deployment project over the years:
e Mr. Brian Clowe and Ms. Manjula Datta-Barua
with CenterPoint Energy, Houston, Texas;
e Mr. Deepak Maragal with New York Power
Authority, White Plains, New York.

REFERENCES

[1] J.D. McDonald, “Substation Automation, IED integration and
availability of information,” /EEE Power and Energy Magazine,
vol. 1, no. 2, pp. 22-31, 2003.

[2] A.A. Girgis, M.B. Johns, “A hybrid expert system for faulted
section identification, fault type classification and selection of

[3]

[4]

[3]

[6]

(7

[8]
[
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]
[23]
[24]

[25]

[26]
[27]

fault location algorithms,” IEEE Trans. Power Delivery, vol. 4.
no. 2, 1989; 978-985

S.D.J. McArthur, A. Dysko, J.R. McDonald, S.C. Bell, R.
Mather, S.M. Burt, “The Application of Model Based
Reasoning Within Decision Support System for Protection
Engineers,” [EEE. Trans. Power Del., vol. 11, no. 4, 1996

M. Kezunovic, 1. Rikalo, C.W. Fromen, D.R. Sevcik, “Expert
System Reasoning Streamlines Disturbance Analysis,” /EEE
Comput. Appl. Power, vol. 7, no. 2, 1994; 15-19

D. R. Sevcik, R. B. Lunsford, M. Kezunovic, Z. Galijasevic, S.
Banu, T. Popovic, “Automated Analysis of Fault Records and
Dissemination of Event Reports,” GeorgiaTech Fault and
Disturbance Analysis Conf., Atlanta, Georgia, 2000.

M. Kezunovic, T. Popovic, “Substation Data Integration for
Automated Data Analysis Systems,” [EEE PES General
Meeting, Tampla Florida, June 2007.

T. O’Reilly, Lessons from Open-Source Software Development,
Communications of the ACM, vol. 32, no. 4, pp. 33-37, April
1999.

Open Source Initiative, OSI, [Online]. Available:
http://www.opensource.org

M. Cohn, “Succeeding with Agile: Software Development
Using Scrum,” Addison-Wesley Professional, 1 ed., Nov. 2009.
Open source software development method, Wikipedia,
[Online]. Available:
http://en.wikipedia.org/wiki/Open_source_software_developme
nt_method

S. Prehn, “Open Source Software Development Process,” Term
Paper, TU Kaiserslautern AG Software Engineering Seminar,
July 2007.

E. S. Raymond, “The Cathedral & the Bazaar: Musings on
Linux and Open Source by an Accidental Revolutionary,”
O’Reilly Media, Rev. Ed., Jan 2001.

IEEE Task Force on Open Source Software for Power Systems,
IEEE [Online]. Available:

http://ewh.ieee.org/cmte/psace/ CAMS_taskforce/

Grid Protection Alliance products, GPA, [Online]. Available:
http://www.gridprotectionalliance.org

T. Popovic, M. Kezunovic, “Measures of value: data analytics
for automated fault analysis,” [EEE Power and Energy
Magacine, vol.10, no. 5, pp. 58-69, 2012

IEEE Standard Common Format for Transient Data Exchange
(COMTRADE), 1EEE Std. C37.111-1999, 1999.

IEEE Standard for Common Format for Event Data Exchange
(COMFEDE) for Power Systems, IEEE Standard C37.239-2010,
2010.

IEEE Standard for Common Format for Naming Time Sequence
Data Files (COMNAME), IEEE Std. C37.232-2011, 2011.

W. Lewandowski, J. Azoubib, W.J. Klepczynski, “GPS:
Primary Tool for Time Transfer,” Proceedings of the IEEE,
87(1), pp. 163-172, 1999.

Communication Networks and Systems in Substations, IEC Std.
61850, International Electrotechnical Commission, [Online].
Available: http://www.iec.ch

Common Interface Model (CIM), IEC 61970-301, International
Electrotechnical Commission, 2002

RFC 20: ASCII format for Network Interchange, ANSI
X3.401968, October 1969.

Extensible Markup Language (XML), [Online]. Available:
www.w3.org/TR/xml/

Database Language SQL, ISO/IEC 9075, [Online]. Available:
http://www.iso.org

M. Kezunovic, S. Sternfeld, M. Datta-Barua, D. Maragal, T.
Popovic, “Automated Fault and Disturbance Analysis:
Understanding the Configuration Challenge,” 201/ Georgia
Tech Fault and Disturbance Analysis Conf., May 2011.

Java platform, Oracle, [Online]. Available: http://java.com

J.E. Robbins, “Adopting Open Source Software Engineering
(OSSE) Practices by Adopting OSSE Tools,” ICSE 02,
Orlando, FL, May 2002.

[28]
[29]
[30]
[31]
[32]
[33]
[34]

[35]

Ubuntu Linux, Canonical, [Online]. Available:
http://www.ubuntu.com

Apache Tomcat, Apache, [Online]. Available:
http://tomcat.apache.org

Apache HTTP Server, Apache, [Online]. Available:
http://httpd.apache.org

PostgreSQL Database, [Online]. Available:
http://www.postgresql.org

Mozilla Firefox web browser, Mozilla, [Online]. Available:

http://www.mozilla.org

Oracle VirtualBox, [Online]. Available:
http://www.virtualbox.org

VMware Virtualization Software, [Online]. Available:
http://www.vmware.com

Amazon Elastic Compute Cloud (Amazon EC2), Amazon,
[Online]. Available: http://aws.amazon.com/ec2/

[36]

[37]

[38]

[391

[40]

C. Zheng, Y. Dong, O. Gonen, M. Kezunovic, “Data Integration
Used in New Applications and Control Center Visualization
Tools,” IEEE/PES General Meeting, Minneapolis, USA, 2010
A.W. McMorran, “A common information model (CIM) toolkit
framework implemented in Java,” [EEE Trans. Power Systems,
vol. 21, no. 1, pp. 194-201, Feb 2006.

M. Kezunovic, S. Sternfeld, M. Datta-Barua, D. Maragal, T.
Popovic, “Automated Fault and Disturbance Analysis:
Understanding the Configuration Challenge,” GeorgiaTech
Fault and Disturbance Conf., Atlanta, Georgia, 2011.

M. Kezunovic, “Smart Fault Location for Smart Grids,” /EEE
Trans. Smart Grid, vol. 2, no. 1,2011; 11-22

L. De Andrade, T. Ponce de Ledo. “Impedance-Based Fault
Location Analysis for Transmission Lines,” 20/2 [EEE PES
Transmission and Distribution Conf. (T&D). 2012; 1-6

