Big Data Uses in Smart Grids: Challenges and Opportunities

M. Kezunovic Life Fellow, IEEE Regents Professor Director, Smart Grid Center Texas A&M University

ENGINEERING EXPERIMENT STATIO

SMART GRID CENTER

Outline

- Smart Grid Domains and Interactions
- Problems to Solve and Expectations
- Sources and Properties of Big Data
- Challenges and Opportunities
- Examples:
 - Asset Management
 - Outage Management
- Conclusions

Smart Grid Domains

Domain evolution

- Original NIST domains, 2009
- Addition of other domains

Integrated Ecosystem

Data Connectivity

The Internet of Things

ILLUSTRATION CREDIT: The Register. Website: http://regmedia.co.uk/2014/05/06/freescale_internet_of_things_overview_l.jpg

Advancing Technology for Humanity

Outline

- Smart Grid Domains and Interactions
- Problems to Solve and Expectations
- Sources and Properties of Big Data
- Challenges and Opportunities
- Examples:
 - Asset Management
 - Outage Management
- Conclusions

Problem to solve: Outages

Source: Energy Information Administration

FIGURE 1. U.S. Electric Grid Disruptions

The Department of Energy tracks major electric disturbance events through Form OE-417. Utilities submit information about qualifying incidents, including when they occurred, where they occurred, what triggered them, and how many customers were affected. Notably, while the reported number of non-weather-related events is high, the vast majority of incidents resulting in customer outages occur because of weather.

SOURCE: UCS ANALYSIS, BASED ON OE N.D.

© Union of Concerned Scientists 2015; www.ucsusa.org/lightsout

Major Outage Causes Animal (169) Faulty Equipment/Human Animal (206) 3 13 169 Error (925) Faulty Equipment/Human Error Planned (189) 925 1279 (921)Planned (175) Unknown (818) Unknown (578) Vehicle Accident (354) Vehicle Accident (483) Weather/Trees (966) 189 Theft/Vandalism (30) Weather/Trees (1,279) 483 Overdemand (6) 818 Overdemand (3) Theft/Vandalism (13) Source: Annual Eaton

Source: Annual Eaton Investigation 2013

What causes our power outages?

Investigation 2016

Source: We Energies

Advancing Technology for Humanity

Products and Services

BIG DATA LANDSCAPE 2017

Last updated 4/5/2017

© Matt Turck (@mattturck), Jim Hao (@jimrhao), & FirstMark (@firstmarkcap) mattturck.com/bigdata2017

IEEE Advancing Technoloav for Humanity

Investments

Big Data Investments Continue to Rise but Slowing Down

Big Data Spending by Industry Vertical

World Markets, Forecast: 2012 - 2018

Smart Grid Data Growth

Source: EPRI, GMT Research 2013 FIGURE 1-9: DATA GENERATION AND UTILIZATION

Source: EPRI, GTM Research, 2014

Outline

- Smart Grid Domains and Interactions
- Problems to Solve and Expectations
- Sources and Properties of Big Data
- Challenges and Opportunities
- Exemples:
 - Asset Management
 - Outage Management
- Conclusions

Sources of Big Data

Vegetation Indices

GIS

UAS

Network Assets Data

Utility measurements

Advancing Technology for Humanity

Lighting

Weather Data

Weather Station

Radar

Satellite

National Digital Forecast Database (NDFD)

Example: Apparent Temperature Data download: every 3 hours Forecast for next 3 days Data resolution: 3 hours

Big Data Properties: 4 Vs

Big Data Properties: Examples

	Data Class	Data Source	VOLUME	VELOCITY	VERACITY		
		(Measurements)	(Data file size)	(Rate of use)	(Accuracy)		
	Utility	SM	120GB per day	Every 5-15 min	error <2.5%		
V	measurements	PMU	30GB per day	240 samples/sec	error <1%		
		ICM	5GB per day	250 samples/sec	error <1%		
A		DFR	10MB per fault	1600 samples/sec	error <0.2%		
R	Weather data	Radar	612 MB/day per radar scan	Every 4-10 min	1-2 dB; m s ⁻¹		
		Satellite	At least 10 GB per day	Every 1-15 min	VIS<2%; IR<1-2K		
E		ASOS	10 MB/day per station	Every 1 min	T-1.8°F, P<1%, Wind speed - 5%, RR - 4%		
1		NLDN	40 MB/day	During lightning	SE < 200m, PCE <15%		
Y		WFM	5-10 GB/day per model	15min - 12 hours	Varies by parameter		
	Vegetation and	TPWD EMST	2.7 GB for Texas	static	SE < 10 m		
	Topography	TNRIS	300 GB for Texas	static	SE < 1 m		
		LIDAR	7 GB for Harris Co.	static	HE < 1m, VE < 150 cm		
SM – Smart Meter; PMU – Phasor Measurement Unit; ICM – Intelligent Condition Monitor (includes Intelligent Transformer Monitor – ITM, Circuit Breaker Condition Monitor – BCM, etc.); DFR – Digital Fault Recorder; Radar - Radio Detection and Ranging; Satellite - Geostationary and Polar- Orbiting Meteorological Spacecraft; ASOS - Automated Surface Observing System; NLDN – National Lightning Detection Network; WFM – Weather Forecast Model; TPWD EMST - Texas Parks & Wildlife Department - Ecological Mapping Systems of Texas; TNRIS - Texas Natural Resources							

Information System; LIDAR - Light Detection and Ranging.

Big Data Properties: Temporal

Modified from: A. von Meier, A. McEachern, "Micro-synchrophasors: a promising new measurement technology for the AC grid, " i4Energy Seminar, October 19, 2012.

Outline

- Smart Grid Domains and Interactions
- Problems to Solve and Expectations
- Sources and Properties of Big Data
- Challenges and Opportunities
- Exemples:
 - Asset Management
 - Outage Management
- Conclusions

Challenges: Define Solutions

Challenges: Reduce Economic Loss

Annual Business Losses from Grid Problems

Primen Study: \$150B annually for power outages and quality issues

The real victim of power outages are businesses in general

US\$'000 (2010); average cost of one hour power interruption in the US per type of customer

Source: US Department of Energy.

Estimated Costs of Weather-Related Power Outages

Challenges: Predict Risk

Opportunities: Define Risk

Risk = Hazard x Vulnerability x Impacts

Intensity T – Threat Intensity

Hazard – Probability of a threat with intensity T

Vulnerability - Probability of a consequence C if threat with intensity T occurred

Impacts– Estimated economic and/or social impacts if consequence C has occurred

Opportunities: Risk Framework

Outline

- Smart Grid Domains and Interactions
- Problems to Solve and Expectations
- Sources and Properties of Big Data
- Challenges and Opportunities
- Examples:
 - Asset Management
 - Outage Management
- Conclusions

M. Kezunovic, Z. Obradovic, T. Dokic, B. Zhang, J. Stojanovic, P. Dehghanian, and P. -C. Chen, "<u>Predicting Spatiotemporal Impacts of Weather on Power Systems Using Big Data Science</u>," Studies in Big Data, Vol. 24, Witold Pedrycz and Shyi-Ming Chen (Eds), Springer Verlag, 2016

M. Kezunovic, T. Djokic, P-C. Chen, "Big Data Uses for Risk Assessment in Predictive Outage and Asset Management," CIGRE Symposium, Ireland, May, 2017

M. Kezunovic, T. Djokic, "Predictive Asset Management Under Weather Impacts Using Big Data, Spatiotemporal Data Analytics and Risk Based Decision-Making, IREP, Portugal, August 2017

New Data Analytics

Risk = Hazard x Vulnerability x Economic Impact

$R = P[T] \cdot P[C|T] \cdot u(C)$

Intensity T – Lightning peak current

Hazard – Probability of a lightning strike with intensity T

Vulnerability – Probability of a insulation breakdown for a given intensity of lightning strike

Economic Impact – Estimated losses in case of insulation breakdown (cost of maintenance and operation downtime)

BD use in Modeling the Insulator BIL

Conventional method

 BIL determined by insulator manufacturer.

- Insulator breakdown probability determined statistically.
- Economic impact not taken into account.

BD approach

 Manufacturers standard BIL used only as a initial value. Standard BIL changes during the insulator lifetime.

- Insulator breakdown probability determined based on spatio-temporally referenced historical data and real-time weather forecast using data mining.
- Risk model includes economic impact in case of insulator breakdown.

Data Integration

Л	EMPORA	L	SPATIAL		
Lightning Detection Network	Weather	Traveling Wave Fault Locators	Insulation Coordination Studies	Geography	
Date and time of lightning strike	Temperature	Date and time when event was recorded	Surge impedances of towers	Location of substations	
Location of a strike (latitude and longitude)	Atmospheric pressure	Distance to the fault from the line terminals	Surge impedances of ground wire	Geographical representation of the line	
Peak current and lightning strike polarity	Relative humidity	Transient signals recorded at the line terminals	Footing resistance	Location of towers	
Type of lightning strike (cloud to cloud or cloud to	Precipitation	Historical Outage Data	Standard BIL	Location of surge arresters	
ground)	Lightning/Thunde rstorm Probability (Forecast)	Insulator breakdown history	New BIL after accumulated lightning impact	Location of land- based weather stations	

Black – Used in conventional insulation coordination Red – Additional data used in BD method

Prediction Model

32

for Humanity

Result: Risk Map

Risk on January 1st 2009

Risk on December 31st 2014

Risk on January 5th 2015 (Prediction)

Example 2: Vegetation Risk Model

P. C. Chen and M. Kezunovic, "Fuzzy Logic Approach to Predictive Risk Analysis in Distribution Outage Management", *IEEE Transactions on Smart Grid*, vol. 7, no. 6, pp. 2827-2836, November 2016.

T. Dokic, P.-C. Chen, M. Kezunovic, "<u>Risk Analysis for Assessment of Vegetation</u> <u>Impact on Outages in Electric Power Systems</u>", CIGRE US National Committee 2016 Grid of the Future Symposium, Philadelphia, PA, October-November 2016.

New Data Analytics

Risk = Hazard x Vulnerability x Economic Impact

$R = P[T] \cdot P[C|T] \cdot u(C)$

Intensity T – Wind Speed and Direction, Precipitation, Temperature

Hazard – Probability of a weather conditions with intensity T

Vulnerability – Probability of a tree or a tree branch coming in contact with lines for a given weather hazard

Economic Impact – Estimated losses in case of an outage (cost of maintenance and operation downtime)

BD Use in modeling weather Impacts

Data Integration

3

WindSp

WindSpo

WindSpe

WindSpd

13

38

Result: Risk Maps

ID	Zone Order for Tree Trimming Schedule	Average Risk Reduction [%]	Economic Impact Reduction
1	12,1,21,22,13,24,2,3,10,19,11,5,6,18,4,23	32.18	0.39
2	12,1,13,24,	31.98	0.43
	21,22,2,3,10,19,11,5,6,18,4,23		
3	1,12,21,22,10,19,11,5,13,24,2,23,3,6,18,4	26.14	0.28
4	12,1,24,13,	23.84	0.25
	2,3,10,21,11,5,6,18,4,22,19,23		
5	1,12,21,22,24,13,3,10,2,19,6,4,11,5,23,18	20.89	0.26

Conclusions

- Big Data is abundant in smart grids
- It may be used to solve major problems
- More research on data analytics is required
- The solutions have to offer predictive capabilities associated with risks
- Managing assets and outages is a good candidate to gain from BD use
- Big Data created big expectations

QUESTIONS?

Today's presentation will be made available on the IEEE Smart Grid Portal Smartgrid.ieee.org

